
P a g e | 1

Java
Chapter 1

Introduction to Java

What is JAVA

Java is a popular, high-level, general-purpose programming language that
was developed by Sun Microsystems. It was created by James Gosling in
1995. Java is used for building a wide range of applications, from web and
mobile apps to desktop software.

JAVA Features:

 Simple: Java is simple to understand, easy to learn.

 Platform Independent: Java is often referred to as a "write once,
run anywhere" language. This means that once the code is written,
it may be run on any software or hardware system.

 Object-Oriented Programming: Java is an object-oriented

programming language, which means it emphasizes the use of
objects and classes to structure code.

 Portable: Java applications are highly portable because they run
on any platform with a compatible JVM.

 Robust: Java's design includes features like strong type checking,

exception handling, and automatic memory management to help
developers write robust and error-free code.

 Multi-threaded: Java supports multithreading, making it easier to
write programs that can execute multiple tasks concurrently.

 High-performance: With the introduction of features like the Just-

In-Time (JIT) compiler and other optimizations, Java applications
can achieve good performance.

P a g e | 2

First Java Program

Example:

Output:

Java Comments

Comments are used In Java to make the code more readable and
understandable for developers.

Single Line Comments

 Single-line comments start with two forward slashes (//).

 Any content between // and the end of the line is ignored by the Java.

Example:

public class Main {

 public static void main(String[] args) {

 System.out.println("Hello, World!");

 }

}

Hello World!

public class Main {

 public static void main(String[] args) {

 // This is a single line comment

 System.out.println("Hello World!!");

 }

}

P a g e | 3

Multi-line comments

 Multi-line comments start with /* and ends with */.

 Any content between /* and */ will be ignored by the Java.

Example:

Chapter 2

Java Fundamentals

Java Variables

Variables are containers for storing data values.

Syntax:

Create Variables

To define a variable, you must specify its type and assign it a value.

Types of Variables in Java

There are three types of variables in java:

 Local Variables
 Instance Variables

public class Main {

 public static void main(String[] args) {

 /* This is a

 multi line

 comment */

 System.out.println("Hello World!!");

 }

}

datatype variableName = value

int number = 50;

P a g e | 4

 Static Variables

Local Variables

A variable declared within a block, method, or constructor is known as a local
variable.

Example:

Instance Variables

Instance variables, known as non-static variables, are declared in a class
outside of any method, constructor, or block.

Static Variables

Static variables are defined with the static keyword within a class but

outside of any method, constructor, or block.

Example:

Output:

int number = 50;

public class Main {

 public static String name;

 public static void main(String[] args) {

 name = " John";

 System.out.println("Hello" + name);

 }

}

Hello John

P a g e | 5

Java Data Types

Data types are used in Java to classify the various types of data that can be
stored in a variable. There are two types of datatypes in Java:

 Primitive data type

 Non-Primitive data type

Primitive Data Types

There are 8 primitive data types are available in java.

 bool: Boolean data type represents one bit of information either
true or false.

 char: The char data type is a single 16-bit Unicode character.

 byte: Byte data type is an 8-bit signed two's complement integer.

 short: Short data type is a 16-bit signed two's complement integer.

 int: It is a 32-bit signed two’s complement integer.

 long: Long data type is a 64-bit signed two's complement integer.

 float: The float data type is a single-precision 32-bit IEEE 754
floating point.

 double:The double data type is a double-precision 64-bit IEEE 754
floating-point.

Data Type Size Range

bool 1 bit true, false

char 2 byte 0 to 255

byte 1 byte -128 to 127

short 2 byte -32,768 to 32,767

int 4 byte -2,147,483,648 to
2,147,483,647

long 8 byte -
9,223,372,036,854,775,808
to
9,223,372,036,854,775,807

float 4 byte upto 7 decimal digits

double 8 byte upto 16 decimal digits

P a g e | 6

Java Operators

Operators are symbols that perform operations on variables and values.

Java operators are classified into five types:

 Arithmetic Operators

 Assignment operators

 Comparison operators

 Logical operators

 Bitwise operators

Arithmetic Operators

Arithmetic operators are used to perform mathematical operations.

Operator Description Syntax

+ Addition a + b

- Subtraction a - b

* Multiplication a * b

/ Division a / b

% Modulus a % b

Assignment operators

Assignment operators are used to assign values to a variable.

Operator Name Syntax

= Assignment a = b

+= Addition assignment a += b

-= Subtraction assignment a -= b

*= Multiplication
assignment

a *= b

/= Division assignment a /= b

%= Modulus assignment a %= b

Comparison operators

Comparison operators are used to compare two values.

P a g e | 7

Operator Description Example

== Equal a==b

!= Not Equal a!=b

> Greater than a>b

>= Greater than or equal to a >= b

<< /td> Less than a < b

<=< /td> Less than or equal to a <= b

Logical operators

Logical operators perform logical operations and return a boolean value.

Operator Description Example

&& Logical AND a && b

|| Logical OR a || b

! Logical NOT ! (a=2 or b=3)

Bitwise operators

Bitwise operators are used to deal with binary operations.

Operator Description Example

& Bitwise AND a & b

| Bitwise OR a | b

~ Bitwise NOT ~a

^ Bitwise XOR a ^ b

Chapter 3

Java Flow Control

Java if...else Statement

If-Else statements are part of conditional statements.

There are four types of conditional statements in Java:

 The if statement

 The if-else statement

P a g e | 8

 The if…elif…else Statement

 The nested-if statement

If Statement

The if statement is used to execute a block of code if a given condition is

true.

Syntax:

Example:

Output:

If...else statement

The If...else statement is used to execute a block of code if a specified

condition is true and another block of code if the condition is false.

Syntax:

if (condition) {

 // block of code to be executed if the condition is true

}

public class Main {

 public static void main(String[] args) {

 if (10 > 5) {

 System.out.println("10 is greater than 5");

 }

 }

}

10 is greater than 5

if (condition) {

 // block of code to be executed if the condition is true

} else {

 // block of code to be executed if the condition is false

}

P a g e | 9

Example:

Output:

if…elif…else Statement

Java if-elif-else statement executes a block of code among multiple

possibilities.

Syntax:

Example:

public class Main {

 public static void main(String[] args) {

 int x = 10;

 if (x > 5) {

 System.out.println("x is greater than 5");

 } else {

 System.out.println("x is not greater than 5");

 }

 }

}

x is greater than 5

if (condition) {

 // block of code to be executed if condition1 is true

} else if (condition2) {

 // block of code to be executed if the condition1 is false and

condition2 is true

} else {

 // block of code to be executed if the condition1 is false and

condition2 is false

}

public class Main {

 public static void main(String[] args) {

 int x = 10;

 if (x > 15) {

 System.out.println("x is greater than 15");

 } else if (x > 10) {

 System.out.println("x is greater than 10 but less than or equal to

15");

 } else {

 System.out.println("x is equal to 10");

 }

 }

}

P a g e | 10

Output:

Java Switch

The switch statement is used to select one of many code blocks to be

executed.

Syntax:

Example:

x is equal to 10

switch (expression) {

 case value1:

 // block of code

 break;

 case value2:

 // block of code

 break;

 default:

 // block of code

}

public class Main {

 public static void main(String[] args) {

 int wish = 1;

 switch (wish) {

 case 1:

 System.out.println("Good Morning");

 break;

 case 2:

 System.out.println("Good Day");

 break;

 case 3:

 System.out.println("Good Evening");

 break;

 case 4:

 System.out.println("Good Night");

 break;

 }

 }

}

P a g e | 11

Output:

Java For Loop

A for loop is used to execute a piece of code a specified number of

times.

Syntax:

Example:

Output:

Good Morning

for (initialization; testExpression; increment/decrement) {

 // block of code

}

public class Main {

 public static void main(String[] args) {

 for (int i = 1; i <= 5; i++) {

 System.out.println("Hello Java");

 }

 }

}

Hello Java

Hello Java

Hello Java

Hello Java

Hello Java

P a g e | 12

Java While Loop

The while loop is used to execute a block of code as long as a

specified condition is true.

Syntax:

Example:

Output:

Java Do...While Loop

The do-while loop is similar to the while loop. This loop would execute

its statements at least once, even if the condition fails for the first time.

Syntax

while (condition) {

 // block of code

}

public class Main {

 public static void main(String[] args) {

 int i = 1;

 while (i <= 8) {

 System.out.println(i);

 i++;

 }

 }

}

1

2

3

4

5

6

7

8

do {

 // block of code

} while (condition);

P a g e | 13

Example:

Output:

Java Break and Continue

Break Statement

The break statement is used to break out of the loop in which it is

encountered. The break statement is used inside loops or switch statements
in C programming.

Example:

public class Main {

 public static void main(String[] args) {

 int i = 0;

 do {

 System.out.println(i);

 i++;

 } while (i < 5);

 }

}

0

1

2

3

4

public class Main {

 public static void main(String[] args) {

 int i;

 for (i = 0; i < 10; i++) {

 if (i == 6) {

 break;

 }

 System.out.println(i);

 }

 }

}

P a g e | 14

Output:

Continue Statement

The continue statement skips the loop's current iteration and proceeds to

the next one.

Example:

Output:

1

2

3

4

5

public class Main {

 public static void main(String[] args) {

 int i;

 for (i = 1; i < 10; i++) {

 if (i == 3) {

 continue;

 }

 System.out.println(i);

 }

 }

}

1

2

4

5

6

7

8

9

P a g e | 15

Chapter 4

Java Arrays

Arrays in Java are used to store multiple values in a single variable.

Syntax:

Accessing Elements of an Array

Array elements can be accessed using indexing. Indexing in Java starts from
0.

Example:

Output:

Change an Array Element

To change the value of a specific element, use the index number.

Example:

String[] companies = {"Goggle", "Facebook", "Microsoft"};

public class Main {

 public static void main(String[] args) {

 String[] companies = {"Goggle", "Facebook", "Microsoft"};

 System.out.println(companies[1]);

 }

}

Facebook

public class Main {

 public static void main(String[] args) {

 String[] companies = {"Goggle", "Facebook", "Microsoft"};

 companies[2] = "TCS";

 System.out.println(companies[2]);

 }

}

P a g e | 16

Output:

Chapter 5

Java OOP

Java is an object-oriented programming language. The core concept of the

object-oriented programming is to break complex problems into smaller

objects.

Java Class

A class is a blueprint for creating objects.

Create a Class

To create a class, use the keyword class:

Java Objects

An object is called an instance of a class.

TCS

public class Main {

 int x = 5;

}

public class Main {

 int x = 5;

 public static void main(String[] args) {

 Main myObj = new Main();

 System.out.println(myObj.x);

 }

}

P a g e | 17

Output:

Java Methods

A method is a block of code that performs a specific task.

In Java, there are two types of methods:

User-defined Methods: We can create our own method based on our

requirements.

Standard Library Methods: These are built-in methods in Java that are

available to use.

Declaring a Java Method

The syntax to declare a method is:

returnType: It specifies what type of value a method returns. For example

if a method has an int return type then it returns an integer value.

methodName: It is an identifier that is used to refer to the particular

method in a program.

method body: It includes the programming statements that are used to

perform some tasks. The method body is enclosed inside the curly

braces {}.

Example:

5

returnType methodName() {

 // method body

}

int addNumbers() {

// code

}

P a g e | 18

Calling a Method in Java

In the above example, we have declared a method

named addNumbers(). Now, to use the method, we need to call it.

Example:

Output:

addNumbers();

class Main {

 // create a method

 public int addNumbers(int a, int b) {

 int sum = a + b;

 // return value

 return sum;

 }

 public static void main(String[] args) {

 int num1 = 25;

 int num2 = 15;

 // create an object of Main

 Main obj = new Main();

 // calling method

 int result = obj.addNumbers(num1, num2);

 System.out.println("Sum is: " + result);

 }

}

Sum is: 45

P a g e | 19

Java Strings

Java strings are a sequence of characters that are enclosed by double
quotes.

Example:

Output:

String Concatenation

In Java, you can concatenate two strings with the + operator.

Example:

Output:

String Methods

Java has several built-in methods for manipulating strings.

length()

The length method returns the length of a string.

public class Main {

 public static void main(String[] args) {

 String name = "Messi";

 System.out.println(name);

 }

}

Messi

public class Main {

 public static void main(String[] args) {

 String firstName = "Lionel";

 String lastName = "Messi";

 System.out.println(firstName + " " + lastName);

 }

}

Lionel Messi

P a g e | 20

Example:

Output:

toUpperCase() and toLowerCase()

The toUpperCase() and toLowerCase() methods are used to convert

a string to uppercase or lowercase letters.

Example:

Output:

Java Inheritance

Inheritance is one of the key features of OOP that allows us to create a

new class from an existing class.

The extends keyword is used to perform inheritance in Java.

Example:

public class Main {

 public static void main(String[] args) {

 String greeting = "Hello Java";

 System.out.println(greeting.length());

 }

}

6

public class Main {

 public static void main(String[] args) {

 String greeting = "Hello Java";

 System.out.println(greeting.toUpperCase());

 System.out.println(greeting.toLowerCase());

 }

}

HELLO JAVA

hello java

P a g e | 21

Output:

Java Polymorphism

Polymorphism means "many forms", and it occurs when we have many
classes that are related to each other by inheritance.

Example:

class Vehicle {

 protected String brand = "Yamaha";

 public void honk() {

 System.out.println("Bhrum, bhruum!");

 }

}

class Bike extends Vehicle {

 private String modelName = "R15";

 public static void main(String[] args) {

 Bike myFastBike = new Bike();

 myFastBike.honk();

 System.out.println(myFastBike.brand + " " +

myFastBike.modelName);

 }

}

Bhrum, bhruum!

Yamaha R15

P a g e | 22

Output:

class Bird {

 public void birdSound() {

 System.out.println("The bird makes a sound");

 }

}

class Owl extends Bird {

 public void birdSound() {

 System.out.println("The owl sound is: hoot");

 }

}

class Peacock extends Bird {

 public void birdSound() {

 System.out.println("The peacock sound is: scream");

 }

}

class Main {

 public static void main(String[] args) {

 Bird myBird = new Bird();

 Bird myOwl = new Owl();

 Bird myPeacock = new Peacock();

 myBird.birdSound();

 myOwl.birdSound();

 myPeacock.birdSound();

 }

}

The bird makes a sound

The owl sound is: hoot

The peacock sound is: scream

	Introduction to Java
	What is JAVA
	JAVA Features:

	Java Comments
	Single Line Comments
	Multi-line comments

	Java Variables
	Create Variables
	Types of Variables in Java
	Local Variables
	Instance Variables
	Static Variables

	Java Data Types
	Primitive Data Types

	Java Operators
	Arithmetic Operators
	Assignment operators
	Comparison operators
	Logical operators
	Bitwise operators

	Java if...else Statement
	If Statement
	If...else statement
	if…elif…else Statement

	Java Switch
	Java For Loop
	Java While Loop
	Java Do...While Loop
	Java Break and Continue
	Break Statement
	Continue Statement
	Accessing Elements of an Array
	Change an Array Element
	Create a Class

	Java Strings
	String Concatenation
	String Methods
	length()

	Java Polymorphism

